Part Number Hot Search : 
FJN3301R ST10F273 E000567 MTSF3N02 T1210 CDT100 9F002 MB95F
Product Description
Full Text Search
 

To Download IRF1405S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 131 ? i d @ t c = 100c continuous drain current, v gs @ 10v 93 ? a i dm pulsed drain current ? 680 p d @t c = 25c power dissipation 200 w linear derating factor 1.3 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ? 590 mj i ar avalanche current see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy ? mj dv/dt peak diode recovery dv/dt ? 5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 screw 10 lbf?in (1.1n?m) stripe planar design of hexfet ? power mosfets utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this hexfet power mosfet are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these benefits combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g absolute maximum ratings v dss = 55v r ds(on) = 5.3m w i d = 131a ? description 1/11/01 1 automotive mosfet thermal resistance parameter typ. max. units r q jc junction-to-case CCC 0.75 c/w r q ja junction-to-ambient (pcb mount) ? CCC 40 d 2 pak IRF1405S to-262 irf1405l IRF1405S irf1405l l advanced process technology l ultra low on-resistance l dynamic dv/dt rating l 175c operating temperature l fast switching l repetitive avalanche allowed up to tjmax benefits typical applications l electric power steering (eps) l anti-lock braking system (abs) l wiper control l climate control l power door www.kersemi.com
IRF1405S/l 2 parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 55 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.057 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC 4.6 5.3 m w v gs = 10v, i d = 101a ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 69 CCC CCC s v ds = 25v, i d = 110a CCC CCC 20 a v ds = 55v, v gs = 0v CCC CCC 250 v ds = 44v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 200 v gs = 20v gate-to-source reverse leakage CCC CCC -200 na v gs = -20v q g total gate charge CCC 170 260 i d = 101a q gs gate-to-source charge CCC 44 66 nc v ds = 44v q gd gate-to-drain ("miller") charge CCC 62 93 v gs = 10v ? t d(on) turn-on delay time CCC 13 CCC v dd = 38v t r rise time CCC 190 CCC i d = 110a t d(off) turn-off delay time CCC 130 CCC r g = 1.1 w t f fall time CCC 110 CCC v gs = 10v ? between lead, CCC CCC 6mm (0.25in.) from package and center of die contact c iss input capacitance CCC 5480 CCC v gs = 0v c oss output capacitance CCC 1210 CCC pf v ds = 25v c rss reverse transfer capacitance CCC 280 CCC ? = 1.0mhz, see fig. 5 c oss output capacitance CCC 5210 CCC v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance CCC 900 CCC v gs = 0v, v ds = 44v, ? = 1.0mhz c oss eff. effective output capacitance ? CCC 1500 CCC v gs = 0v, v ds = 0v to 44v nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance CCC CCC s d g i gss ns 4.5 7.5 i dss drain-to-source leakage current s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 101a, v gs = 0v ? t rr reverse recovery time CCC 88 130 ns t j = 25c, i f = 101a q rr reverse recoverycharge CCC 250 380 nc di/dt = 100a/s ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 131 ? 680 a www.kersemi.com
IRF1405S/l 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 20 s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 10 100 1000 0.1 1 10 100 20 s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source volta g e (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 4 6 8 10 12 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 169a www.kersemi.com
IRF1405S/l 4 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 60 120 180 240 300 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 101a v = 27v ds v = 44v ds 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c, capacitance(pf) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 1 10 100 1000 10000 1 10 100 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c v , drain-to-source volta g e (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms www.kersemi.com
IRF1405S/l 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds 90% 10% v gs t d(on) t r t d(off) t f v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd fig 10a. switching time test circuit fig 10b. switching time waveforms 25 50 75 100 125 150 175 0 40 80 120 160 t , case temperature ( c) i , drain current (a) c d limited by package 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) www.kersemi.com
IRF1405S/l 6 q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 w t p d.u.t l v ds + - v dd driver a 15v 20v fig 14. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 v gs(th) , variace ( v ) i d = 250a 25 50 75 100 125 150 175 0 200 400 600 800 1000 1200 1400 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 41a 71a 101a www.kersemi.com
IRF1405S/l 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. d t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) = d d d d d t/ z thjc i av = 2 d d d d d t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e ar , avalanche energy (mj) top single pulse bottom 10% duty cycle i d = 101a 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 tav (sec) 0.1 1 10 100 1000 avalanche current (a) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming d tj = 25c due to avalanche losses 0.01 www.kersemi.com
IRF1405S/l 8 peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? ? r g v dd dv/dt controlled by r g i sd controlled by duty factor "d" d.u.t. - device under test d.u.t * circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * reverse polarity of d.u.t for p-channel v gs [ ] [ ] *** v gs = 5.0v for logic level and 3v drive devices [ ] *** fig 17. for n-channel hexfet ? power mosfets www.kersemi.com
IRF1405S/l 9 d 2 pak package outline d 2 pak part marking information 10.16 (.400) r e f. 6.47 (.255) 6.18 (.243) 2.61 (.103) 2.32 (.091) 8.89 (.350) r e f. - b - 1.32 (.052) 1.22 (.048) 2.79 (.110) 2.29 (.090) 1.39 (.055) 1.14 (.045) 5.28 (.208) 4.78 (.188) 4.69 (.185) 4.20 (.165) 10.54 (.415) 10.29 (.405) - a - 2 1 3 15.49 (.610) 14.73 (.580) 3x 0.93 (.037) 0.69 (.027) 5.08 (.200) 3x 1.40 (.055) 1.14 (.045) 1.78 (.070) 1.27 (.050) 1.40 (.055) m ax. notes: 1 dimensions after solder dip. 2 dimensioning & tolerancing per ansi y14.5m, 1982. 3 controlling dimension : inch. 4 heatsink & lead dimensions do not include burrs. 0.55 (.022) 0.46 (.018) 0.25 (.010) m b a m minimum recommended footprint 11.43 (.450) 8.89 (.350) 17.78 (.700) 3.81 (.150) 2.08 (.082) 2x lead assignments 1 - gate 2 - d ra in 3 - source 2.54 (.100) 2x part number international rectifier logo date code (yyw w ) yy = year ww = week assembly lot code f530s 9b 1m 9246 a www.kersemi.com
IRF1405S/l 10 to-262 part marking information to-262 package outline www.kersemi.com
IRF1405S/l 11 ? repetitive rating; pulse width limited by max. junction temperature. (see fig. 11). ? starting t j = 25c, l = 0.11mh r g = 25 w , i as = 101a. (see figure 12). ? i sd 101a, di/dt 210a/s, v dd v (br)dss , t j 175c ? pulse width 400s; duty cycle 2%. notes: ? c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . ? calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a. ? limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. ? this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. d 2 pak tape & reel information 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRF1405S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X